Ecology of harvest-driven trait changes and implications for ecosystem management

Eric P Palkovacs¹*, Monica M Moritsch¹, Gina M Contolini¹, and Fanie Pelletier²

Harvest of wild animals and plants is pervasive, exerts ecological and evolutionary pressure on populations, and is known to drive rapid changes in organismal traits. Although the factors that lead to rapid trait changes have received increased attention, the ecological consequences of harvest-driven trait changes are less appreciated. We review recent evidence that harvest-driven trait changes can affect community and ecosystem processes. Growing experimental evidence, modeling studies, and field observations have revealed that common responses to harvest include changes in life-history and behavioral traits, which have the potential to reshape the ecology of harvested systems. On the basis of existing evidence, we propose a set of general mechanisms that link harvest-driven trait changes to ecological processes, including trophic cascades, nutrient dynamics, keystone interactions, ecosystem stability, and habitat use. Managing harvested ecosystems sustainably may require strategies that account for harvest-driven trait changes. We recommend that trait changes be monitored closely as part of ecosystem-based management plans, especially in cases where targeted traits are known to affect important aspects of ecosystem function.

In a nutshell:
• Humans harvest a large percentage of the wild animal and plant species on Earth
• Hunting, fishing, and collecting are known to change the traits of wild populations, but the ecological consequences of these changes are not well understood
• Life-history and behavioral traits are particularly responsive to harvest and underlie many important aspects of ecosystem function
• As the number of species affected by harvest continues to rise, conservation and management strategies should account for trait responses and their potential impacts on critical ecosystem functions

¹Department of Ecology and Evolutionary Biology, University of California–Santa Cruz, Santa Cruz, CA *(epalkova@ucsc.edu); ²Département de Biologie, Université de Sherbrooke, Sherbrooke, Canada

The harvest of wild animal and plant populations is pervasive and represents a principal driver of contemporary trait change (Darimont et al. 2009). According to the International Union for Conservation of Nature (IUCN), over two thousand species of plants and animals are endangered or critically endangered as a result of overharvesting (IUCN 2015). We consider harvest to include the taking from the wild of any non-domesticated organisms intended for human consumption or other uses. Motivations and methods of harvest are diverse; they include legal hunting and fishing, and illegal poaching for subsistence, recreational, and commercial uses. Harvest also involves the removal from the wild of live organisms for a variety of purposes, most notably the international pet trade. Our definition of harvest is intended to be broad, given that any removal of individuals from wild populations has the potential to drive trait changes.

The ecological effects of harvesting wild animals and plants have traditionally been viewed through the lens of reduced abundance. For example, harvest-driven reductions in the abundance of top predators have been shown to drive trophic cascades in freshwater, marine, and terrestrial ecosystems worldwide (Estes et al. 2011). However, harvest can also cause rapid phenotypic changes in wild populations (Darimont et al. 2009). Importantly, the phenotypic responses of these populations to harvest often involve traits with known importance for ecological dynamics, such as body size and feeding behavior (Heino et al. 2015). The existing literature has focused primarily on assessing rates of observed phenotypic changes, distinguishing evolution from phenotypic plasticity, and assessing consequences for population dynamics (Dunlop et al. 2015; Eikeset et al. 2016). The impact of harvest-induced trait changes for communities and ecosystems has received considerably less attention, despite emerging evidence that contemporary human-driven evolution can be an important driver of community and ecosystem dynamics (Palkovacs et al. 2012; Fraser 2013).

Current information supports harvest as a strong driver of trait change via a combination of demographic (age structure), evolutionary (genetic), and plastic (non-genetic) changes (Heino et al. 2015). Experimental harvests in guppies (Poecilia reticulata) and zebrafish (Danio rerio) were found to cause shifts in phenotypic traits and at functional genetic loci (van Wijk et al. 2013). Evolutionary effects in real-world harvested populations have been more difficult to isolate. Recent work
on Atlantic cod (*Gadus morhua*) supports an important role for evolution in shifting age and size at maturation, with demographic and phenotypic contributions varying depending on density-dependent growth (Eikeset et al. 2016). Likewise, research on bighorn sheep (*Ovis canadensis*) reveals that declines in male horn length were accompanied by genetic changes indicative of evolution (Pigeon et al. 2016). Although both genetic and phenotypic changes can have important ecological consequences (Lundsgaard-Hansen et al. 2014), no studies have isolated these effects in the context of harvest. The rate at which traits recover after the cessation of harvest may depend on the causal mechanisms, with demographic and plastic changes recovering more quickly than genetic changes (Salinas et al. 2012). Here we focus our attention on the ecological consequences of overall changes in phenotypes because this is what field studies have generally documented and what is most immediately relevant for management.

The efficiency of modern human harvesting methods leads to rapid rates of trait change (Darimont et al. 2009). However, these effects are not new and are not restricted to modern harvesting technologies. Declines in body size have been attributed to harvest by indigenous hunter-gatherer groups in a variety of ecosystems. For instance, the early indigenous people of Caribbean Panama drove declines in the size of the edible conch (*Strombus pugilis*) (O’Dea et al. 2014). Similarly, the native people of the San Francisco Bay area caused declines in the size of white sturgeon (*Acipenser transmontanus*) (Broughton et al. 2015). Selective forces caused by indigenous harvest practices may have produced changes over spans of centuries, whereas modern harvest has accelerated rates of change and expanded their geographic scope (Roy et al. 2003).

Harvest can alter traits that are directly targeted by harvesters (eg body size) and associated traits (eg fecundity, egg size) (Walsh et al. 2006). A wide variety of traits may be subject to selection, but in terms of their importance for ecological interactions, two sets of traits that commonly respond to harvest may be particularly important – life-history traits and behavioral traits. For life-history traits, there is strong evidence that harvest drives decreased age and size at maturity (Heino et al. 2015). This shift in age and size aligns with classic predictions from life-history theory based on the effects of increased mortality rates (Stearns 1992). In terms of behavioral traits, harvest tends to remove the boldest, most active individuals, thereby selecting for shyness and inactivity (Biro and Post 2008; Uusi-Heikkila et al. 2008; Arlinghaus et al. 2017). Such a behavioral shift is in general accordance with the classic trade-off between acquiring resources and avoiding predation (Lima and Dill 1990).

Changes in life-history and behavioral traits may affect a wide variety of harvested species and ecosystems (Figure 1). Behavioral responses have been widely observed in both aquatic and terrestrial species, whereas life-history shifts have been primarily documented in aquatic species (Kuparinen and Festa-Bianchet 2017). This disparity may be due to a combination of factors, including differences in growth strategies, harvest methods, and exploitation rates. Harvested aquatic species exhibiting strong life-history shifts typically display
indeterminate growth (continuous growth throughout life) and have been subject to high exploitation rates in size-selective commercial fisheries. In contrast, examples from terrestrial species come primarily from species with determinate growth (growth ceases at maturation) that have been subject to recreational hunting at much lower, but still highly selective, levels. Nonetheless, evidence is emerging that recreational harvest of terrestrial mammals can cause life-history shifts (Kuparinen and Festa-Bianchet 2017). Trait changes in terrestrial species that have been subject to high rates of commercial exploitation, such as the near-extinction of bison (Bison bison) and beavers (Castor canadensis) from large portions of North America, have not been evaluated for evidence of trait change. The multitude of species affected by historical and current hunting undoubtedly include many undocumented and unexplored cases of trait change.

Ecosystem consequences

Studies to date indicate that harvest-driven trait changes may affect community and ecosystem processes (Figure 2) in various ways, including the (1) strength of trophic cascades, (2) rates of nutrient recycling and translocation, (3) activities of keystone species and ecosystem engineers, (4) ecosystem stability, and (5) patterns of habitat use. For each potential mechanism, our reference point is the unharvested state of the system, and our predictions are based on expected trait changes and resulting ecological changes. In harvest scenarios, evolution can prevent extinction (Dunlop et al. 2015), thereby maintaining community structure. The effect of evolution on population persistence has been explored in detail elsewhere (Carlson et al. 2014). Here we focus on the effects of trait changes on ecological interactions. We review evidence from theoretical models, experiments, and observational studies of harvested ecosystems and explore implications for managing these ecosystems.

Theoretical models

Modeling studies have explored the potential effects of trait change on the strength of trophic cascades and the stability of ecosystem processes (Figure 2). Ecogenetic models have played a major role in improving our understanding of the consequences of fishing for the evolution of life-history traits and for population dynamics under harvest and recovery (Dunlop et al. 2015). Despite their widespread use in fisheries ecology, ecosystem models are just beginning to be applied to examine ecological responses to harvest-induced trait changes. Several recent studies suggest that even modest rates of decline in body size can have ecosystem effects comparable to the direct effects of fishing on population size (Audzijonyte et al. 2014).
Modeled food web interactions suggest that trait changes may amplify the effects of fishing on targeted stocks. Smaller body size increases vulnerability to predators and can therefore increase natural mortality rates, which can further reduce population abundance and hinder post-fishing recovery (Audzijonyte et al. 2014). Reduced body size can also affect the strength of trophic cascades by reducing per-capita consumption rates of harvested predators (Audzijonyte et al. 2014). Food web models also suggest that evolution of smaller size and earlier age of maturation may destabilize ecosystems, leading to large population and biomass fluctuations at multiple trophic levels (Figure 3) (Kuparinen et al. 2016). However, by increasing population size, adaptation can also support the presence of more and larger fish, even under high fishing mortality. These larger fish often occupy a higher trophic position, leading to increased variation or trophic scope of the population, which may have important consequences for food web dynamics (Kindsvater and Palkovacs 2017).

At the same time, harvesting may change behavioral traits, for example by reducing boldness and inducing prey switching that may further amplify the strength of trophic cascades. These types of changes can lead to ecosystem state shifts if, for example, a prey species released from predation increases in abundance and begins to consume large numbers of juvenile predators (Audzijonyte et al. 2014). Importantly, models suggest that the ecological changes caused by harvest-induced downsizing amplify the effects of fishing, perhaps making ecosystems more vulnerable to the effects of overfishing than previously thought (Kuparinen et al. 2016).

Experimental evidence

Experimental studies have revealed important effects of trait change on the strength of trophic cascades and rates of nutrient recycling (Figure 2). Experimental work in Trinidadian guppies (P reticulata) shows that, when translocated from streams with predators to streams without predators, these fish underwent rapid evolutionary change, maturing at a later age and larger size (Renzick et al. 1990). These introduction experiments can serve as a useful analogy for understanding the evolution of life-history traits under harvest (Renzick and Ghalambor 2005). Experiments in captive guppy populations demonstrate that body size and associated genetic markers respond to size-selective harvest over four generations, where the removal of large individuals rapidly decreased mature body size in the population (van Wijk et al. 2013).

Recent experiments extend this work on guppy evolution to examine consequences for communities and ecosystems (Palkovacs et al. 2009; Bassar et al. 2010; El-Sabaawi et al. 2015). In addition to exhibiting shifts in life-history traits, guppy populations that have adapted to the presence of predators display differences in feeding behavior and nutrient excretion rates. Consistent with a trade-off between acquiring resources and avoiding predation, guppies from high-predation localities exhibit reduced feeding rates as compared to guppies from low-predation sites (Palkovacs et al. 2011). Perhaps because of lower population densities and reduced intraspecific competition, high-predation guppies are more selective for high-quality food items, in particular invertebrate prey high in phosphorus content (Zandonà et al. 2011). Due to their smaller size, high-predation guppies also recycle nitrogen and phosphorus at higher rates (on a per gram basis) than do guppies from low-predation sites (Palkovacs et al. 2009). This combination of traits leads to a suite of ecosystem changes; ecosystems with high-predation guppies consistently show lower invertebrate biomass and higher algal biomass (Palkovacs et al. 2009; Bassar et al. 2010; El-Sabaawi et al. 2015). The ecosystem shift caused by guppy evolution is not subtle. The effects of guppy trait change on ecosystem properties are equivalent to other “classic” ecological drivers such as guppy invasion.

Figure 3. Evolution caused by fishing can lead to large fluctuations in population densities across multiple trophic levels (adapted from Kuparinen et al. 2016). Fisheries-induced changes in size and maturation age for Eurasian perch (Perca fluviatilis) and European whitefish (Coregonus lavaretus) in central Europe’s Lake Constance are predicted to increase the magnitude of variation in total ecosystem biomass (black line represents the case with no evolution; red line represents the case with evolution).
Body size of harvested fishes. Anadromous fishes migrate from the ocean into fresh water to spawn and, in doing so, move marine-derived nutrients into coastal freshwater ecosystems (Schindler et al. 2003). Anadromous species – including sockeye salmon (Oncorhynchus nerka), Chinook salmon (Oncorhynchus tshawytscha), and alewife (Alosa pseudoharengus) – show evidence of harvest-driven changes in life-history traits and body size (Davis and Schultz 2009; Kendall et al. 2014; Lewis et al. 2015). Reductions in body size for these species decrease phosphorus imports into freshwater ecosystems (Twining et al. 2016). Harvested fishes not only translocate nutrients between ecosystems, but also recycle nutrients within ecosystems. In the tropical rivers of Venezuela, the flannelmouth caracín (Prochilodus mariae) is the principal fish species shaping nutrient dynamics. Size-selective harvest has reduced body size of this species markedly, with important consequences for detrital processing and nutrient recycling (Taylor et al. 2006).

Ecosystem impacts of harvest-driven trait changes are particularly strong when they disrupt interactions involving keystone species and ecosystem engineers. The maintenance of diverse ecosystem processes depends on keystone interactions involving harvested species. In the seasonally flooded forests of South America, frugivorous fish species are the principal vectors for seed dispersal, structuring the plant community of the forest itself. Seed dispersal effectiveness increases with body size; larger fish disperse greater numbers of seeds from a wider diversity of plant species (Anderson et al. 2011; Correa et al. 2015). Thus, harvest-induced reduction in body size has the potential to alter the diversity and structure of flooded forests.

In the marine environment, keystone predators and ecosystem engineers can maintain the structure of the ecosystem. In kelp forests, predation on urchins is critical for maintaining habitat structure. In California, larger California sheephead (Semicossyphus pulcher) consume greater numbers and larger sizes of urchins (Mesocentrotus franciscanus and Strongylocentrotus purpuratus), exerting more top-down control on urchin populations (Hamilton and Caselle 2015). Harvest-driven reductions in sheephead size release urchins from top-down control, potentially leading to the loss of kelp. Likewise, in eastern Tasmania, harvest-driven reductions in the body size of spiny lobsters (Jasus edwardsii) release urchins from predation (Ling et al. 2009). Kelp forest ecosystems display alternative stable states, and the loss of large lobsters has led to an ecosystem state shift from kelp beds to urchin barrens (Ling et al. 2009) (Figure 4). On coral reefs, large

Figure 4. Harvest-driven trait changes can cause major ecosystem state shifts, such as the transition between alternative stable states – in this case from kelp beds to urchin barrens when spiny lobster (Jasus edwardsii) body size is reduced (adapted from Ling et al. 2009). Knowledge of trait-dependent ecological interactions, ongoing trait monitoring, and management limits for trait change may be useful for preventing undesirable ecosystem state shifts, which can be difficult to reverse.

(Palkovacs et al. 2009), guppy density (Bassar et al. 2010), and light availability (El-Sabaawi et al. 2015).

Observational evidence

Studies of harvested ecosystems show that harvest-driven trait changes can impact trophic cascades; nutrient recycling and translocation; the activities of keystone species and ecosystem engineers; and patterns of habitat use (Figure 2). Perhaps the best-studied example of fisheries-induced evolution of life-history traits and body size in the wild comes from Atlantic cod. Populations from across the North Atlantic have experienced substantial shifts in age and size at maturation indicative of fisheries-induced evolution (Heino et al. 2015). Reduced body size in cod releases planktivorous prey fishes from predation pressure, leading to large-scale trophic cascades (Shackell et al. 2010). The effects of life-history evolution for population recovery have received some attention; evolutionary responses are predicted to slow population recovery after the cessation of fishing (Dunlop et al. 2015). However, food web changes that result from reduced body size may further impede population recovery if predators increasingly become prey. Such ecological changes may be contributing to the failure of cod stock recovery (Swain 2011).

Nutrient dynamics can be affected by changes in the

www.frontiersinecology.org © The Ecological Society of America
parrotfish (*Bolbometopon* spp) act as dominant grazers and bioeroders, reducing algal accumulation on coral polyps and creating sediment for reef flat habitats (Bellwood et al. 2012). Heavy fishing in parts of the Australian Great Barrier Reef has reduced parrotfish size, decreasing algal consumption rates and contributing to a transition from a coral-dominated to an alga-dominated ecosystem (Hoe and Bellwood 2008).

Harvesting can shift behavior in ways that not only affect habitat use and feeding patterns but also induce trophic cascades. In temperate forests in North America and Europe, selection on elk (*Cervus canadensis*) and red deer (*Cervus elaphus*) from trophy hunting targets bolder and more active individuals (Ciuti et al. 2012; Lone et al. 2015). Changes in behavior and habitat use by elk and other mammalian herbivores may, in turn, influence patterns of plant regeneration. Brown bears (*Ursus arctos*) in Scandinavia change their habitat use to avoid encounters with hunters and, in doing so, may change interactions with their own prey species (Ordiz et al. 2012) as well as with humans (Steyaert et al. 2016). Harvest also affects migratory behavior in some ungulate species, thereby redistributing herbivory across the landscape (Loe et al. 2016). For mesocarnivores that are hunted and harassed, the fear of humans and domestic dogs changes vigilance and feeding behavior in ways that can lead to trophic cascades (Clinchy et al. 2016; Suraci et al. 2016). It would be worthwhile to explore similar effects in other species—for example, the potential for humans to change the ecosystem engineering behavior of beavers in ways that might change aquatic and riparian ecosystems.

Implications for conservation and management

To maintain selected aspects of ecosystem function, resource managers may require to reduce trait changes or restore trait values in harvested species. This will necessitate implementing management strategies—including decreasing harvest rates and harvest selectivity, as well as creating refuges—that maintain plasticity and genetic variation within populations. Such approaches will be important for integrating harvest-induced trait change into ecosystem-based management (EBM).

Decreasing harvest rates and selectivity

When natural selection acts in opposition to harvest selection, managing trait changes can be achieved by decreasing harvest mortality (Edeline et al. 2007). Balanced exploitation, in which harvest is distributed across many species, can reduce the selective pressure on a few of the targeted species without decreasing the overall harvested biomass (Garcia et al. 2012). This strategy may be effective when applied to communities of harvested species that all contribute to a shared ecosystem function, such as grazers that consume algae on coral reefs or frugivores that disperse seeds in tropical forests.

In combination with reducing harvest rates, decreasing harvest selectivity can substantially slow trait change. Reducing selectivity can be achieved by switching or rotating through different gear types or harvesting methods, each of which targets individuals with different sets of traits (Martinez et al. 2005; Pauli et al. 2015). To combat the truncation of size distributions, many recreational fisheries rely on slot limits, which specify both a minimum and maximum legal size at which an individual can be harvested. While minimum size limits alone tend to impose strong size selection on exploited populations, slot limits protect the largest individuals, thereby reducing the strength of directional selection (Matsumura et al. 2011). In sequential hermaphrodites and species characterized by marked sexual dimorphism with respect to body size, size-selective harvest can skew sex ratios, which can have its own effects on ecosystem processes (Fryxell et al. 2015). Slot limits can be used to maintain balanced sex ratios for such species.

Establishing refuges and protected areas

Protected areas can be effective tools for maintaining genetic variation in populations connected by gene flow. Inside reserves, the natural selection regime is maintained. Gene flow out of the reserve can slow the rate of trait changes in nearby harvested populations. This strategy is analogous to the agricultural practice of deliberately avoiding the application of pesticides on selected fields adjacent to crops to prevent the fixation of genes conferring pesticide resistance in crop pests. Various implementations of marine protected areas (MPAs) have shown that reserves can reverse shifts in size distribution imposed by selective harvest. MPAs have been effective at restoring large lobsters, allowing them to once again control sea urchins and shift the state of the ecosystem from urchin barrens back to kelp beds (Ling et al. 2009) (Figure 4). Analyses of global case studies have demonstrated that even long-lived, slow-growing species can recover to sustainable size distributions within 5 years of enacting no-take zones (Babcock et al. 2010). However, reserves alone may be ineffective at reversing evolutionary changes, necessitating their use in combination with other strategies for managing the magnitude and selectivity of harvest outside of the reserve (Dunlop et al. 2009).

Spatial restrictions are less effective for managing the harvest of wide-ranging species or species that make long-distance migrations (Miethe et al. 2011). For migratory species, harvest may drive changes in movement patterns, favoring individuals that either do not move through harvested areas or that move during times when harvest pressure is low. For such species, care should be taken to avoid harvest selection that would change migratory behavior, given that such behavior can be a major driver of community and ecosystem processes. It is important to protect the migratory species’ life stages that are most evolutionarily responsive to harvest. Specifically,
protecting areas where both adults and juveniles feed and grow may be more effective at reducing harvest-driven trait changes than protecting adults alone in spawning areas (Dunlop et al. 2009; Miethe et al. 2011). Non-static refuge types such as dynamic protected areas and time-area closures in fisheries have received little attention from the standpoint of managing trait change, but may be an effective approach for highly migratory species.

Integrating trait changes into ecosystem-based management

EBM has emerged as a holistic alternative to single-species management (Laugen et al. 2014). Broadly defined, EBM seeks to maintain an ecosystem’s biodiversity and function. While management actions used in this approach vary, ecosystem-based approaches focus on maintaining target levels for various physical and biological indicators of ecosystem health. Integrating trait change into EBM is likely important for maintaining sustainable harvests and other ecosystem services (Laugen et al. 2014). Species-specific targets for trait values could be considered in EBM plans, and traits of harvested populations could be monitored as early warning signs of ecological regime shifts. For instance, rapid changes in the life-history traits of Atlantic cod were observed prior to the collapse of the fishery (Olsen et al. 2004). Had these changes been detected earlier, the effects of the collapse might have been lessened or avoided. For some traits, such as predator body size, changes can cause major shifts in ecosystem state (Ling et al. 2009; Shackell et al. 2010). Therefore, management limits for allowable trait changes could be considered, based on ecological information, such as empirical predator–prey body size relationships and the propensity of harvested ecosystems to exhibit non-linear behavior such as threshold dynamics or alternative stable states.

Despite recent progress toward understanding the ecological impacts of harvest-driven trait changes, some important knowledge gaps remain. First, there is limited direct evidence from terrestrial ecosystems linking trait changes to ecological outcomes. In addition to behavioral changes, harvest in terrestrial species often affects sexually selected traits such as horns, antlers, and tusks (Chiyo et al. 2015; Pigeon et al. 2016). Such traits can serve as defensive weapons against predators, and their reduction or loss may have implications for predator–prey interactions, which deserve further study. Second, existing evidence for harvest-driven trait changes comes primarily from regulated commercial and recreational harvests. These harvest systems often rely on modern technology and are closely monitored by fishery and wildlife managers. The many other forms of harvest, which may rely on traditional technologies and informal management, warrant monitoring for evidence of such changes and their ecological consequences. Finally, the interacting effects of harvest and climate change on traits and ecosystems are largely unknown. Many traits that respond to harvest are also expected to respond to climate change. For example, both harvest and climate warming are predicted to select for reduced body size, but the magnitude of such shifts is expected to differ between organisms and ecosystem types (Forster et al. 2012). How harvesting and climate change will interact to shape traits and ecological processes across a range of climate and harvest scenarios deserves detailed attention.

Conclusions

As the number of harvested species continues to rise, scientists and resource managers need to update ecosystem management strategies with current ecological and evolutionary knowledge. Existing evidence suggests that harvest is causing rapid changes to the traits of individuals within wild populations. Many of these traits play an important role in community and ecosystem processes. The use of adaptive management strategies may enable scientists and resource managers to examine key aspects of how harvest-driven trait changes are reshaping community and ecosystem processes. We propose that contemporary trait change and its ecosystem consequences be considered in the development and implementation of conservation and management plans.

Acknowledgements

Thanks to J Estes, M Kinnison, and the authors’ lab groups for comments that improved the manuscript. EPP was supported by NSF (DEB #1457333, DEB #1556378) and the NOAA Cooperative Institute for Marine Ecosystems and Climate. FP was supported by NSERC and the Canada Research Chair in Evolutionary Demography and Conservation. The authors declare they have no financial incentives or conflicts of interest for producing this work.

References

Supporting Information

Additional, web-only material may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/fee.1743/suppinfo

Calling leaders of biological infrastructure projects!

Is your digital data resource, collection, field station, or laboratory financially sustainable? Do you feel confident in your ability to manage finances, plan for the future, analyze your stakeholders, communicate effectively, and diversify your funding sources?

Our Strategies for Success course can help.

Come spend three days developing an action plan for your project, learning from our expert faculty, and networking with colleagues. Our alumni agree that the knowledge and skills they gain during our training has a meaningful impact on their projects within 6 to 12 months.

Next course: June 19 to 21, 2018
Apply by February 28 and save $50 on the course fee

Sustaining Biological Infrastructure
www.esa.org/sbi

National Science Foundation